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Abstract

Following the 2018 Murphy v. NCAA decision that pre-
cipitated rapid U.S. online gambling expansion, “crash”
games have emerged as a popular cryptocurrency format
claiming cryptographically verifiable outcomes—known
in the industry as “provably fair.” We analyze 20,038
rounds from an anonymized platform, testing whether
game-generated multipliers conform to the theoretical
distribution. Kolmogorov-Smirnov and chi-square tests
detect statistically significant deviations (p < 10−15),
though these are economically negligible. Following Wang
and Pleimling’s (2019) methodology, we estimate the
probability density function exponent at α ≈ 1.98, match-
ing the theoretical value of 2.0 and confirming fair ran-
dom number generation—contrasting with their findings
of α = 1.4–1.9 for player cashouts, which reflect behav-
ioral biases rather than manipulation. Monte Carlo simu-
lations confirm that no betting strategy produces positive
returns. Session-level analysis reveals rapid loss velocity:
at 179 rounds per hour, players face expected losses ex-
ceeding 500% of wagered amounts hourly. These findings
support cryptographic verifiability claims while highlight-
ing that mathematical fairness does not ensure consumer
safety.

1 Introduction
The landscape of legal gambling in the United States
has transformed dramatically since the Supreme Court’s
May 2018 ruling in Murphy v. National Collegiate Ath-
letic Association, which struck down the Professional and
Amateur Sports Protection Act (PASPA) of 1992 as un-
constitutional under the Tenth Amendment [Murphy v.
NCAA, 2018]. In the six years following PASPA’s re-
peal, 38 states and the District of Columbia have legal-
ized sports betting, with commercial sportsbooks report-
ing a record $121 billion in total handle and $11 billion in
revenue during 2023 [AGA, 2024]. Combined with $41.9
billion from Native American gaming operations and $6.2
billion from online casinos, the legal U.S. gambling indus-
try now exceeds $100 billion annually [NIGC, 2023].

This regulatory shift has coincided with the emergence
of cryptocurrency-based gambling platforms operating
outside traditional regulatory frameworks. Among the
most popular formats is the “crash” game, a multiplier-
based gambling mechanism where a displayed value in-
creases from 1.0x until randomly “crashing,” with players
attempting to cash out before the crash occurs [Wang
and Pleimling, 2019]. These platforms typically claim
cryptographically verifiable outcomes—referred to in the
industry as “provably fair”—meaning players can verify
that game results were predetermined using hash chains
and not manipulated in response to bets.

The mathematical properties of crash games derive
from their underlying random number generator. Under
the stated 97% return-to-player (RTP) for the specific
game analyzed in this study, the multiplier M follows the
distribution:

M =
RTP
U

, U ∼ Uniform(0, 1) (1)

This implies a survival function P (M ≥ m) = RTP/m
for m ≥ 1 and a probability density function f(m) =
RTP/m2, a Pareto-like distribution with exponent 2.

Prior empirical work on crash games is limited. Wang
and Pleimling [2019] analyzed player behavior on sim-
ilar cryptocurrency gambling platforms, finding that
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cashout distributions exhibited probability density expo-
nents ranging from 1.4 to 1.9, significantly below the the-
oretical value of 2.0. They interpreted this as evidence
of probability weighting, whereby players systemati-
cally overweight low-probability, high-reward outcomes—
a well-documented phenomenon in prospect theory [Kah-
neman and Tversky, 1979, Prelec, 1998].

Importantly, Wang and Pleimling’s analysis focused on
player cashout behavior (when do players choose to exit?)
rather than game-generated outcomes (what multipliers
does the platform produce?). This distinction is criti-
cal: deviations in cashout distributions reflect psycholog-
ical biases in human decision-making, while deviations in
game-generated multipliers would indicate potential ma-
nipulation or flawed random number generation.

This paper addresses the latter question through rigor-
ous statistical analysis of game-generated multipliers from
an anonymized crash game platform. We make three con-
tributions: (1) we test whether the empirical distribution
conforms to the theoretical model using multiple hypothe-
sis tests; (2) we estimate the probability density function
exponent following Wang and Pleimling’s methodology
to assess random number generator fairness; and (3) we
quantify consumer risk through Monte Carlo simulation
of betting strategies.

2 Data and Methods

2.1 Dataset
We collected 20,038 consecutive game rounds from a pop-
ular crash game platform during January 7–12, 2026 (6
calendar days, 112 hours total). Each observation consists
of a timestamp and the final crash multiplier. The plat-
form name is anonymized to focus on statistical method-
ology rather than platform-specific claims. The platform
states a 97% RTP, implying a 3% house edge.

Descriptive statistics confirm heavy-tailed behavior
characteristic of Pareto distributions: median 1.94x
(matching the theoretical 1.94x), minimum 1.00x, max-
imum 10,000x. The sample mean of 11.12x is highly
volatile due to extreme observations; notably, the the-
oretical expectation E[M ] is undefined for Pareto(α = 2)
distributions as the integral

∫∞
1

m ·m−2dm diverges. The
empirical distribution exhibits positive skewness (46.9)
and excess kurtosis (2,514), consistent with heavy tails.

2.2 Theoretical Model
Under the stated RTP of 97%, the cumulative distribution
function is:

F (m) = 1− 0.97

m
, m ≥ 1 (2)

The survival function (probability of reaching a given
multiplier) is:

S(m) = P (M ≥ m) =
0.97

m
(3)

For a player cashing out at target t, the success probabil-
ity is 0.97/t and expected return is (t × 0.97/t) = 0.97,
yielding 3% expected loss regardless of strategy—the
mathematical basis for the house edge.

2.3 Statistical Tests

We employ multiple complementary approaches to test
distributional conformity:

Kolmogorov-Smirnov Test The KS test compares
empirical and theoretical CDFs:

D = sup
m

|Fn(m)− F (m)| (4)

where Fn(m) is the empirical CDF. This test is sensitive
to any distributional deviation.

Chi-Square Goodness of Fit We partition the sup-
port into bins [1, 1.2), [1.2, 1.5), . . . , [100,∞) and compare
observed to expected frequencies under H0.

Independence Tests We apply the Wald-Wolfowitz
runs test and Ljung-Box test for autocorrelation to ver-
ify that outcomes are serially independent, as required by
cryptographic verifiability claims.

2.4 Probability Weighting Analysis

Following Wang and Pleimling [2019], we estimate the
PDF exponent α via three methods:

Log-log Regression Fitting logS(m) = log(RTP) −
β log(m) yields survival exponent β; the PDF exponent
is α = β + 1.

Maximum Likelihood We fit a Pareto distribution to
multipliers ≥ 1.1, obtaining shape parameter b and PDF
exponent α = b+ 1.

Hill Estimator Using the k largest observations:

α̂ =
k∑k

i=1 log(X(n−i+1)/X(n−k))
(5)

2.5 Monte Carlo Simulation

We simulate 10,000 betting sessions of 100 rounds each
under four strategies: fixed 1.5x cashout, fixed 2.0x
cashout, Martingale (doubling after losses), and Kelly cri-
terion optimization. Each simulation uses the empirical
multiplier distribution.
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2.6 Bootstrap Confidence Intervals

RTP confidence intervals are computed via percentile
bootstrap with 1,000 resamples. For each resample, we es-
timate RTP from the survival function at multiple thresh-
olds (m ∈ {1.5, 2, 3, 5, 10}) and average the implied RTP
values ˆRTPm = Ŝ(m) ×m. The 95% CI is taken as the
2.5th and 97.5th percentiles of the bootstrap distribution.

3 Results

3.1 Distributional Tests

Table 1: Hypothesis test results for distributional confor-
mity

Test Statistic P-value Result

Kolmogorov-Smirnov 0.030 4.2× 10−16 Reject
Chi-Square (9 df) 72.97 4.0× 10−12 Reject
Runs Test −0.45 0.65 Fail to rej.
Ljung-Box Q(10) 7.09 0.72 Fail to rej.

Table 1 reveals an important pattern: while distributional
tests strongly reject exact conformity to the theoretical
model (p < 10−15), independence tests find no evidence
of serial correlation or non-randomness. This suggests
the random number generator produces independent out-
comes with slight calibration differences from the stated
model.

Figure 1 illustrates the heavy-tailed distribution char-
acteristic of crash games: most rounds end quickly at
low multipliers, while rare events exceed 100x or even
1000x. This extreme variance creates the illusion of po-
tential large wins while the house edge operates reliably
over time.

Figure 1: Heavy-tailed multiplier distribution on log-log
scale. Colors indicate magnitude: blue (1–10x), orange
(10–100x), red (>100x). The maximum observed multi-
plier was 10,000x.

3.2 RTP Estimation

Bootstrap estimation yields RTP = 97.45% (95% CI:
95.41%–99.50%), encompassing the stated 97%. The
slight excess may reflect sampling variation in extreme
multipliers or minor calibration differences.

3.3 Probability Weighting Analysis

Table 2: PDF exponent estimates following Wang and
Pleimling (2019)

Method Est. Theor. Dev.

Log-log regression 1.972 2.000 −1.4%
Maximum Likelihood 1.998 2.000 −0.1%
Hill estimator (mean) 1.956 2.000 −2.2%

Wang & Pleimling 1.4–1.9 2.0 −5 to −30%

Our PDF exponent estimates (Table 2) cluster around
1.98, within 2.2% of the theoretical value. This contrasts
sharply with Wang and Pleimling’s findings of 1.4–1.9
for player cashout distributions. The distinction confirms
that:

1. The game’s random number generator produces fair
outcomes conforming to the theoretical distribution

2. Wang & Pleimling’s observed deviations reflect
player behavioral biases (probability weighting)
rather than game manipulation

Figure 2 shows the empirical survival function—the
probability of reaching a target multiplier before the game
crashes. Key probabilities are annotated: a 2x target suc-
ceeds 48.5% of the time, while reaching 10x occurs only
9.7% of the time.

Figure 2: Survival probability on log-log scale with
key targets annotated. The close fit between empirical
(points) and theoretical (line) confirms the stated 97%
RTP.
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3.4 Independence Tests

The runs test (Z = −0.45, p = 0.65) and Ljung-Box test
(Q(10) = 7.09, p = 0.72) find no evidence of serial depen-
dence, confirming outcomes are independent as claimed.

3.5 Consumer Risk Assessment

Figure 3 visualizes the consumer protection implications:
50 simulated player sessions using a conservative 1.5x
strategy. Despite short-term variance, all trajectories
trend toward the expected loss line (dashed). The house
edge is mathematically inevitable.

Figure 3: Simulated player sessions (1.5x strategy, 200
rounds). Individual paths show high variance, but all
trend toward expected loss (dashed line). Highlighted
paths show typical losing trajectories.

Monte Carlo simulation of 10,000 sessions under four
strategies confirms theoretical predictions (Table 3):

Table 3: Monte Carlo results (10k sessions × 100 rounds)

Strategy Mean Std Ruin 95% CI

1.5x Fixed −2.6% 4.8% 0% [−3.0,−2.2]
2.0x Fixed −2.8% 8.1% 0% [−3.1,−2.5]
Martingale −24.3% 31.2% 18% [−27,−22]
Kelly −28.1% 19.4% 0% [−31,−25]

All strategies produce negative expected returns. The
Martingale strategy, despite its intuitive appeal, results
in 18% ruin rate and highest average losses, consistent
with theoretical analysis of betting systems under nega-
tive expectation [Thorp, 1984, Kaplan, 2020]. The Kelly
criterion, designed to maximize long-run growth when a
positive edge exists, produces the worst mean returns here
because no positive edge exists—Kelly optimization un-
der negative expectation leads to aggressive betting that
accelerates losses.1

1The Kelly criterion recommends betting fraction f∗ = (bp−q)/b

3.6 Statistical Power

The observed deviation for the 1.5x strategy (65.07%
empirical vs. 64.67% theoretical success rate) yields
Z = 1.20, p = 0.115. Current power at α = 0.05 is 32.7%;
detecting a 1 percentage point deviation with 80% power
would require approximately 77,000 observations.

4 Discussion

Our analysis yields several key findings with implications
for consumers, regulators, and platform operators:

Statistical deviations without exploitable ad-
vantage. The highly significant KS and chi-square tests
(p < 10−15) reflect the statistical power of a 20,000-
observation sample to detect minute deviations. The
practical magnitude of these deviations is small: the em-
pirical RTP of 97.45% is economically indistinguishable
from the stated 97%. No betting strategy exploits these
deviations profitably.

Confirmation of fair random number genera-
tion. Our PDF exponent estimates (α ≈ 1.98) match
the theoretical value of 2.0 within 2.2%, confirming that
the game’s random number generator produces outcomes
consistent with the stated model. This contrasts with
Wang and Pleimling’s findings of α = 1.4–1.9 for player
cashout distributions, which reflect psychological proba-
bility weighting rather than game manipulation.

Serial independence supports cryptographic
verifiability. The absence of autocorrelation and tem-
poral patterns supports the platform’s assertion that out-
comes are predetermined and independent, consistent
with HMAC-based hash chain verification mechanisms.

Consumer protection implications. While the
game operates fairly in a technical sense, no strategy pro-
duces positive expected returns. The 3% house edge com-
pounds over repeated play: a player wagering $100 per
round for 1,000 rounds faces expected losses of $3,000
with substantial variance. Consumer protection efforts
should focus on harm minimization (loss limits, time lim-
its, self-exclusion) rather than game fairness, which our
analysis confirms.

Session-level harm and illusion of control. Be-
yond mathematical fairness, crash games present distinct
psychological risks [Griffiths, 2018, Gainsbury, 2015]. Our
data reveal 179 rounds per hour with 16-second me-
dian intervals, implying expected hourly losses exceed-
ing 500% of amounts wagered. The manual cashout me-
chanic creates an “illusion of control”—a well-documented
phenomenon whereby perceived agency increases engage-
ment even when outcomes are mathematically invariant
to player decisions [Newall, 2019]. This design pattern,
common in modern gambling interfaces [Schüll, 2012],

where b is odds, p is win probability, q = 1 − p. When expected
value is negative (bp < q), the optimal Kelly bet is zero; any positive
bet accelerates ruin.
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masks the deterministic nature of losses and warrants at-
tention from regulators developing responsible gambling
frameworks [Auer and Griffiths, 2023].

4.1 Comparison with Prior Literature
Our findings complement and extend Wang and Pleimling
[2019]’s behavioral analysis:

• Wang and Pleimling: Analyzed player cashout be-
havior, found α = 1.4–1.9, interpreted as probability
weighting

• This study: Analyzed game-generated outcomes,
found α ≈ 1.98, interpreted as fair random number
generation

The reconciliation is straightforward: the game pro-
duces fair outcomes, but players make biased decisions
about when to cash out, overweighting low-probability
high-reward scenarios. This behavioral pattern is consis-
tent with decades of research on probability weighting in
prospect theory [Tversky and Kahneman, 1992].

4.2 Limitations
Our analysis is subject to several limitations. First, the
6-day observation window, while sufficient for detecting
distributional deviations, may miss longer-term temporal
patterns. Second, we analyze a single platform; gener-
alization to other crash games requires additional study.
Third, our Monte Carlo simulations assume the empiri-
cal distribution is representative of true game behavior;
strategic changes by the platform would invalidate these
estimates.

4.3 Statistical Power Constraints
An important caveat concerns our ability to detect subtle
manipulation. As detailed in Appendix B, our sample of
N = 20,038 provides 80% power to detect approximately
2% relative manipulation at the 2x threshold, but only 6%
manipulation at the 10x threshold. Sophisticated plat-
forms could theoretically manipulate rare high-multiplier
outcomes—where detection is hardest—while maintain-
ing fair behavior at common thresholds. Definitive verifi-
cation of cryptographic fairness requires either (a) access
to the complete seed chain for hash verification, or (b)
sample sizes 10–20× larger than collected here. Our sta-
tistical tests confirm consistency with the stated model
but cannot rule out all forms of subtle tail manipulation.

5 Conclusion
This study provides the first rigorous statistical val-
idation of crash game outcomes, demonstrating that
an anonymized platform generates multipliers consistent
with its stated theoretical model. The PDF exponent of

α ≈ 1.98 matches the theoretical value of 2.0, confirming
fair random number generation despite highly significant
(but economically negligible) distributional deviations de-
tected by KS and chi-square tests.

From a consumer protection perspective, the key find-
ing is that no betting strategy produces positive expected
returns. While platforms may operate fairly—as this
one appears to—the mathematical structure guarantees
player losses over time. As legal gambling continues to ex-
pand following the 2018 PASPA repeal, regulators should
ensure that cryptographic verifiability claims are backed
by transparent statistical verification, while consumer
protection efforts focus on harm minimization rather than
game mechanics.

Future work should extend this methodology to addi-
tional platforms, examine the relationship between game-
generated outcomes and player behavioral patterns, and
develop standardized protocols for statistical verification
of cryptographically verifiable claims in online gambling.
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A Cryptographic Verification
Mechanism

Crash games typically implement cryptographic verifi-
ability via HMAC-SHA256. The platform generates a
server seed S and combines it with a public chain of
hashes. For each round, the crash multiplier is derived
as:

M = max

(
1,

⌊
252

h mod 252
× RTP

⌋
× 0.01

)
(6)

where h is the hash output interpreted as an integer. This
produces M ≥ 1 with the theoretical distribution P (M <
m) = 1− RTP/m.

A.1 Bit Extraction and Modular Bias
The 52-bit extraction from the 256-bit HMAC-SHA256
output introduces negligible bias. Since 2256 is not exactly
divisible by 252, the modulo operation creates slight non-
uniformity of magnitude 252/2256 ≈ 10−62—far below any
detectable threshold and irrelevant for practical fairness
assessment.

A.2 Floor Function Bias
The floor() operation in the formula systematically
rounds down, creating small downward bias in expected
multipliers. For continuous 1/U transformation, this in-
troduces approximately 0.01–0.02% additional effective
house edge beyond the stated RTP, which is incorporated
into the nominal 97% figure.

A.3 Instant Bust Mechanism
The max(1, . . .) construct creates a probability mass at
M = 1.00 when the raw formula produces values below
1. We observed 698 exact 1.00x outcomes (3.48%), con-
sistent with the theoretical P (raw < 1) = 1−RTP = 3%.
The observed rate of M ≤ 1.01 (4.45%, 891 of 20,038
rounds) slightly exceeds the theoretical 3.96% (binomial
test p = 0.0005), representing a minor but statistically de-
tectable deviation that marginally favors the house. This
is consistent with rounding and discretization effects in
the formula implementation.

B Power Analysis for Tail Manip-
ulation Detection

Table 4 presents the sample sizes required to detect
manipulation at various multiplier thresholds with 80%
power (α = 0.05).

Table 4: Required N to detect relative manipulation (80%
power, α = 0.05)

Threshold P (M ≥ m) 1% manip. 2% manip. 5% manip.

2x 0.485 166,634 41,643 6,653
5x 0.194 649,705 161,804 25,588
10x 0.097 1,454,822 362,072 57,145

Our sample of N = 20, 038 provides 80% power to de-
tect approximately 2% relative manipulation at the 2x
threshold, but only 6% manipulation at the 10x threshold.
Detecting subtle tail manipulation requires substantially
larger samples or targeted auditing of high-multiplier out-
comes.
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